3.451 \(\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{x^2 (d+e x)} \, dx\)

Optimal. Leaf size=240 \[ -\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (a e-c d x)}{x}+\frac{\sqrt{c} \sqrt{d} \left (3 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt{e}}-\frac{\sqrt{a} \sqrt{e} \left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt{d}} \]

[Out]

-(((a*e - c*d*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/x) + (Sqrt[c]*Sqrt[d]*(c*d^2 + 3*a*e^2)*ArcTanh[
(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[
e]) - (Sqrt[a]*Sqrt[e]*(3*c*d^2 + a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt
[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.273474, antiderivative size = 240, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {849, 812, 843, 621, 206, 724} \[ -\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (a e-c d x)}{x}+\frac{\sqrt{c} \sqrt{d} \left (3 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt{e}}-\frac{\sqrt{a} \sqrt{e} \left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt{d}} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x]

[Out]

-(((a*e - c*d*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/x) + (Sqrt[c]*Sqrt[d]*(c*d^2 + 3*a*e^2)*ArcTanh[
(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[
e]) - (Sqrt[a]*Sqrt[e]*(3*c*d^2 + a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt
[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[d])

Rule 849

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + (c*
x)/e)*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rule 812

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*(a + b*x + c*x^2)^p)/(e^2*(m + 1)*(m
+ 2*p + 2)), x] + Dist[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*(
b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p
 + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
  !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx &=\int \frac{(a e+c d x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2} \, dx\\ &=-\frac{(a e-c d x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}-\frac{1}{2} \int \frac{-a e \left (3 c d^2+a e^2\right )-c d \left (c d^2+3 a e^2\right ) x}{x \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac{(a e-c d x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}+\frac{1}{2} \left (a e \left (3 c d^2+a e^2\right )\right ) \int \frac{1}{x \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx+\frac{1}{2} \left (c d \left (c d^2+3 a e^2\right )\right ) \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac{(a e-c d x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}-\left (a e \left (3 c d^2+a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a d e-x^2} \, dx,x,\frac{2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )+\left (c d \left (c d^2+3 a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )\\ &=-\frac{(a e-c d x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}+\frac{\sqrt{c} \sqrt{d} \left (c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt{e}}-\frac{\sqrt{a} \sqrt{e} \left (3 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac{2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 1.37625, size = 263, normalized size = 1.1 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (\frac{\sqrt{c} d \sqrt{c d} \left (3 a e^2+c d^2\right ) \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )}{\sqrt{e} \sqrt{c d^2-a e^2} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}}}-\frac{\sqrt{a} \sqrt{e} \left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a e+c d x}}{\sqrt{a} \sqrt{e} \sqrt{d+e x}}\right )}{\sqrt{d+e x}}+\frac{\sqrt{d} \sqrt{a e+c d x} (c d x-a e)}{x}\right )}{\sqrt{d} \sqrt{a e+c d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[d]*(-(a*e) + c*d*x)*Sqrt[a*e + c*d*x])/x + (Sqrt[c]*d*Sqrt[c*d]*(c*d^2 +
 3*a*e^2)*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])])/(Sqrt[e]*Sqrt[
c*d^2 - a*e^2]*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)]) - (Sqrt[a]*Sqrt[e]*(3*c*d^2 + a*e^2)*ArcTanh[(Sqrt[d]*Sq
rt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/Sqrt[d + e*x]))/(Sqrt[d]*Sqrt[a*e + c*d*x])

________________________________________________________________________________________

Maple [B]  time = 0.068, size = 1310, normalized size = 5.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x)

[Out]

1/a/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*c+1/d*c/a*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*x-1/d^2/a/e/x*
(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)-1/8*e^4/d^3*a^2/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-3/16*e^4/d*a
^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)+27/16
*e^2*d*a*c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/
2)-1/4*e^3/d^2*a*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x-1/4*e*c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/
2)*x+1/16*d^3*c^2*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))
^(1/2))/(d*e*c)^(1/2)+1/4*e^3/d^2*a*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x+1/8*e^4/d^3*a^2/c*(c*d*e*(
d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)+3/16*e^4/d*a^2*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d
*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)+e^2/d*a*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+5/4*e
*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x+7/16*d^3*c^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*
e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)-1/2*e^3*a^2/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d
*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)+2/3*e/d^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+17/8*d
*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/3*e/d^2*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(3/2)-1/8*d*c*(c*
d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)-1/16*e^6/d^3*a^3/c*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(
1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)-3/16*e^2*d*a*c*ln((1/2*a*e^2-1/2*c*d^2+(d/e+
x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)+1/16*e^6/d^3*a^3/c*ln((1/
2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)-3/2*d^2*a*e/(a
*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)*c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{3}{2}}}{{\left (e x + d\right )} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 10.4746, size = 2589, normalized size = 10.79 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="fricas")

[Out]

[1/4*((c*d^2 + 3*a*e^2)*sqrt(c*d/e)*x*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*(2*c*d*e^2
*x + c*d^2*e + a*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) +
 (3*c*d^2 + a*e^2)*sqrt(a*e/d)*x*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x
^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d^2*e + (c*d^3 + a*d*e^2)*x)*sqrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x
^2) + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*x - a*e))/x, -1/4*(2*(c*d^2 + 3*a*e^2)*sqrt(-c*d/e)*x
*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^
2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^2)*x)) - (3*c*d^2 + a*e^2)*sqrt(a*e/d)*x*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*
a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d^2*e + (c*d^3 + a*d*e^2)*x)*s
qrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*x - a*e))/
x, 1/4*(2*(3*c*d^2 + a*e^2)*sqrt(-a*e/d)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (
c*d^2 + a*e^2)*x)*sqrt(-a*e/d)/(a*c*d*e^2*x^2 + a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x)) + (c*d^2 + 3*a*e^2)*sqrt
(c*d/e)*x*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*(2*c*d*e^2*x + c*d^2*e + a*e^3)*sqrt(c
*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*sqrt(c*d*e*x^2 + a*d*e +
(c*d^2 + a*e^2)*x)*(c*d*x - a*e))/x, -1/2*((c*d^2 + 3*a*e^2)*sqrt(-c*d/e)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e
+ (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^
2)*x)) - (3*c*d^2 + a*e^2)*sqrt(-a*e/d)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c
*d^2 + a*e^2)*x)*sqrt(-a*e/d)/(a*c*d*e^2*x^2 + a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x)) - 2*sqrt(c*d*e*x^2 + a*d*
e + (c*d^2 + a*e^2)*x)*(c*d*x - a*e))/x]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/x**2/(e*x+d),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError